

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	Gears 0.7.2 documentation 
 
      

    


    
      
          
            
  
Gears

Gears is a library to compile, concatenate and minify JavaScript and CSS
assets, highly inspired by Ruby’s Sprockets [http://getsprockets.org]. You can also write scripts,
styles and client templates using CoffeeScript [http://jashkenas.github.com/coffee-script/], Handlebars [http://www.handlebarsjs.com/], Stylus [http://learnboost.github.com/stylus/], Less [http://lesscss.org/],
and compile them using external packages (gears-coffeescript [https://github.com/gears/gears-coffeescript],
gears-handlebars [https://github.com/gears/gears-handlebars], gears-stylus [https://github.com/gears/gears-stylus], gears-less [https://github.com/gears/gears-less]). These packages already include
all required node.js modules, so you don’t need to worry about installing them
yourself.

There is also:


	django-gears [http://django-gears.readthedocs.org], an app for Django that integrates Gears with Django project;

	Flask-Gears [https://github.com/gears/flask-gears], an extension that integrates Gears with Flask application;

	gears-cli [https://github.com/gears/gears-cli], a command-line utility that compiles assets. It also can watch
assets for changes and automaticaly re-compile them.




Source Code

Gears code is hosted on GitHub: https://github.com/gears/gears.




Contents



	About
	The Problem

	Motivation and Design Decisions





	Installation
	Installing the Development Version





	API
	Environment

	Asset Attributes

	Asset Handlers





	Changelog
	0.7.2 (2014-04-28)

	0.7.1 (2014-04-28)

	0.7 (2014-04-23)

	0.6.1 (2013-09-08)

	0.6 (2013-04-28)

	0.5.1 (2012-10-16)

	0.5 (2012-10-16)

	0.4 (2012-09-23)

	0.3 (2012-06-24)

	0.2 (2012-02-18)

	0.1.1 (2012-02-26)

	0.1 (2012-02-26)















          

      

      

    


    
         Copyright 2013, Mike Yumatov.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Gears 0.7.2 documentation 
 
      

    


    
      
          
            
  
About


The Problem

The amount of code on the client side significantly grows in the modern
web-applications. JavaScript and CSS files size increases, and it becomes more
difficult to navigate through them. Static files must be broken down into
modules. But the more static files you connect to the HTML page, the more HTTP
requests must be done to load this page, which increases the load time.

CSS and JavaScript files must be combined in production to reduce the number
of subsequent HTTP requests to load the page. This is what Gears does for you.




Motivation and Design Decisions

But this problem is not new, and there are many awesome Python libraries here
to solve it. So why another one? I’ve tried almost every existent library, and
none of them fits my needs (and taste). Some of them are only for Django,
some require you to specify asset dependencies in Python (or YAML, or JSON,
or HTML).

So, when I decided to create Gears, I pursued two goals:


	this library should be framework-agnostic and cover as much as possible
contexts;

	asset dependencies should be described in the usual way, much like this is
done in the modern languages (e.g., in Python).



Let’s look at both.


Usage Contexts

I have to work with static in different contexts:


	in Django projects;

	in reusable Django apps;

	in Flask apps;

	in static sites.



And I want to use only one library for all this contexts (I don’t want to deal
with many different libraries).




Asset Dependencies

Yes, there are already Python libraries, that cover all this contexts. But I
don’t like their approach to describing dependencies between assets. It should
be more like how we import modules in Python, Ruby, Java, etc. Dependencies
for the asset should be described in this asset, not in the other place.
Imagine for a moment that all imports in Python project would have to be
described in JSON file in the root of this project. It would be terrible.

I like how this problem is solved in Ruby’s Sprockets library. Dependencies
between assets must be described in header comments with special syntax. It was
decided to use this approach and syntax in Gears.









          

      

      

    


    
         Copyright 2013, Mike Yumatov.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Gears 0.7.2 documentation 
 
      

    


    
      
          
            
  
Installation

You can install Gears with pip [http://www.pip-installer.org/]:

$ pip install Gears





If you want to use node.js-dependent compilers or compressors, you need to
install other dependencies:

$ pip install gears-less          # LESS
$ pip install gears-stylus        # Stylus
$ pip install gears-handlebars    # Handlebars
$ pip install gears-coffeescript  # CoffeeScript

$ pip install gears-uglifyjs      # UglifyJS
$ pip install gears-clean-css     # clean-css





Please note that all these compilers and compressors require node.js to be
installed on your system.

It is strongly recommended to install Gears within activated virtualenv [http://virtualenv.org/].

If you want to use one of available extensions (django-gears [http://django-gears.readthedocs.org], Flask-Gears [https://github.com/gears/flask-gears] or
gears-cli [https://github.com/gears/gears-cli]), please refer to its documentation instead.


Installing the Development Version

If you want to work with the latest version of Gears, install it from the
public repository (Git [http://git-scm.com/] is required):

$ pip install -e git+https://github.com/gears/gears@develop#egg=Gears











          

      

      

    


    
         Copyright 2013, Mike Yumatov.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Gears 0.7.2 documentation 
 
      

    


    
      
          
            
  
API


Environment


	
class gears.environment.Environment(root, public_assets=(<function <lambda> at 0x3955d70>, '^css/style\.css$', '^js/script\.js$'), manifest_path=None, cache=None, gzip=False, fingerprinting=True)

	This is the central object, that links all Gears parts. It is passed the
absolute path to the directory where public assets will be saved.
Environment contains registries for file finders, compilers, compressors,
processors and supported MIME types.





	Parameters:	
	root – the absolute path to the directory where handled public assets
will be saved by save() method.

	public_assets – a list of public assets paths.

	cache – a cache object. It is used by assets and dependencies to
store compilation results.

	fingerprinting – if set to True, fingerprinted versions of assets
won’t be created.










	
find(item, logical=False)

	Find files using finders registry. The item parameter
can be an instance of AssetAttributes
class, a path to the asset or a logical path to the asset. If item
is a logical path, logical parameter must be set to True.

Returns a tuple with AssetAttributes
instance for found file path as first item, and absolute path to this
file as second item.

If nothing is found, gears.exceptions.FileNotFound exception
is rased.






	
list(path, mimetype=None)

	Yield two-tuples for all files found in the directory given by
path parameter. Result can be filtered by the second parameter,
mimetype, that must be a MIME type of assets compiled source code.
Each tuple has AssetAttributes
instance for found file path as first item, and absolute path to this
file as second item.

Usage example:

# Yield all files from 'js/templates' directory.
environment.list('js/templates/*')

# Yield only files that are in 'js/templates' directory and have
# 'application/javascript' MIME type of compiled source code.
environment.list('js/templates/*', mimetype='application/javascript')










	
paths

	The list of search paths. It is built from registered finders, which
has paths property. Can be useful for compilers to resolve internal
dependencies.






	
register_defaults()

	Register default compilers, preprocessors and MIME types.






	
register_entry_points(exclude=())

	Allow Gears plugins to inject themselves to the environment. For
example, if your plugin’s package contains such entry_points
definition in setup.py, gears_plugin.register function will be
called with current environment during register_entry_points call:

entry_points = {
    'gears': [
        'register = gears_plugin:register',
    ],
}





Here is an example of such function:

def register(environment):
    assets_dir = os.path.join(os.path.dirname(__file__), 'assets')
    assets_dir = os.path.absolute_path(assets_dir)
    environment.register(FileSystemFinder([assets_dir]))





If you want to disable this behavior for some plugins, list their
packages using exclude argument:

environment.register_entry_points(exclude=['plugin'])










	
save()

	Save handled public assets to root directory.






	
suffixes

	The registry for supported suffixes of assets. It is built from
MIME types and compilers registries, and is cached at the first call.
See Suffixes for more information.










File Finders Registry


	
class gears.environment.Finders

	The registry for file finders. This is just a list of finder objects.
Each finder object must be an instance of any
BaseFinder subclass. Finders from this registry are
used by Environment object in the order they
were added.


	
register(finder)

	Append passed finder to the list of finders.






	
unregister(finder)

	Remove passed finder from the list of finders. If finder
does not found in the registry, nothing happens.












MIME Types Registry


	
class gears.environment.MIMETypes

	The registry for MIME types. It acts like a dict with extensions as
keys and MIME types as values. Every registered extension can have only one
MIME type.


	
register(extension, mimetype)

	Register passed mimetype MIME type with extension extension.






	
register_defaults()

	Register MIME types for .js and .css extensions.






	
unregister(extension)

	Remove registered MIME type for passed extension extension. If
MIME type for this extension does not found in the registry, nothing
happens.












Compilers Registry


	
class gears.environment.Compilers

	The registry for compilers. It acts like a dict with extensions as keys
and compilers as values. Every registered extension can have only one
compiler.


	
register(extension, compiler)

	Register passed compiler with passed extension.






	
unregister(extension)

	Remove registered compiler for passed extension. If compiler for
this extension does not found in the registry, nothing happens.












Preprocessors Registry


	
class gears.environment.Preprocessors

	The registry for asset preprocessors. It acts like a dictionary with
MIME types as keys and lists of processors as values. Every registered MIME
type can have many preprocessors. Preprocessors for the MIME type are used
in the order they were added.


	
register_defaults()

	Register DirectivesProcessor as
a preprocessor for text/css and application/javascript MIME types.












Postprocessors Registry


	
class gears.environment.Postprocessors

	The registry for asset postprocessors. It acts like a dictionary with
MIME types as keys and lists of processors as values. Every registered MIME
type can have many postprocessors. Postprocessors for the MIME type are
used in the order they were added.








Compressors Registry


	
class gears.environment.Compressors

	The registry for asset compressors. It acts like a dictionary with
MIME types as keys and compressors as values. Every registered MIME type
can have only one compressor.


	
register(mimetype, compressor)

	Register passed compressor for passed mimetype.






	
unregister(mimetype)

	Remove registered compressors for passed mimetype. If compressor
for this MIME type does not found in the registry, nothing happens.












Suffixes Registry


	
class gears.environment.Suffixes

	The registry for asset suffixes. It acts like a list of dictionaries.
Every dictionary has three keys: extensions, result_mimetype and
mimetype:


	suffix is a suffix as a list of extensions (e.g. ['.js', '.coffee']);

	result_mimetype is a MIME type of a compiled asset with this suffix;

	mimetype is a MIME type, for which this suffix is registered.












Asset Attributes


	
class gears.asset_attributes.AssetAttributes(environment, path)

	Provides access to asset path properties. The attributes object is
created with environment object and relative (or logical) asset path.

Some properties may be useful or not, depending on the type of passed path.
If it is a relative asset path, you can use all properties except
search_paths. In case of a logical asset path it makes sense to
use only those properties that are not related to processors and compressor.





	Parameters:	
	environment – an instance of Environment
class.

	path – a relative or logical path of the asset.










	
compiler_extensions

	The list of compiler extensions.
Example:

>>> attrs = AssetAttributes(environment, 'js/lib/external.min.js.coffee')
>>> attrs.compiler_extensions
['.coffee']










	
compiler_format_extension

	Implicit format extension on the asset by its compilers.






	
compiler_mimetype

	Implicit MIME type of the asset by its compilers.






	
compilers

	The list of compilers used to build asset.






	
compressor

	The compressors used to compress the asset.






	
extensions

	The list of asset extensions.
Example:

>>> attrs = AssetAttributes(environment, 'js/models.js.coffee')
>>> attrs.extensions
['.js', '.coffee']

>>> attrs = AssetAttributes(environment, 'js/lib/external.min.js.coffee')
>>> attrs.format_extension
['.min', '.js', '.coffee']










	
format_extension

	The format extension of asset.
Example:

>>> attrs = AssetAttributes(environment, 'js/models.js.coffee')
>>> attrs.format_extension
'.js'

>>> attrs = AssetAttributes(environment, 'js/lib/external.min.js.coffee')
>>> attrs.format_extension
'.js'










	
logical_path

	The logical path to asset.
Example:

>>> attrs = AssetAttributes(environment, 'js/models.js.coffee')
>>> attrs.logical_path
'js/models.js'










	
mimetype

	MIME type of the asset.






	
path_without_suffix

	The relative path to asset without suffix.
Example:

>>> attrs = AssetAttributes(environment, 'js/app.js')
>>> attrs.path_without_suffix
'js/app'










	
postprocessors

	The list of postprocessors used to build asset.






	
preprocessors

	The list of preprocessors used to build asset.






	
processors

	The list of all processors (preprocessors, compilers,
postprocessors) used to build asset.






	
search_paths

	The list of logical paths which are used to search for an asset.
This property makes sense only if the attributes was created with
logical path.

It is assumed that the logical path can be a directory containing a
file named index with the same suffix.

Example:

>>> attrs = AssetAttributes(environment, 'js/app.js')
>>> attrs.search_paths
['js/app.js', 'js/app/index.js']

>>> attrs = AssetAttributes(environment, 'js/app/index.js')
>>> attrs.search_paths
['js/models/index.js']










	
suffix

	The list of asset extensions starting from the first known extension.
Example:

>>> attrs = AssetAttributes(environment, 'js/lib/external.min.js.coffee')
>>> attrs.suffix
['.js', '.coffee']










	
unknown_extensions

	The list of unknown extensions, which are actually parts of asset
filename. Example:

>>> attrs = AssetAttributes(environment, 'js/lib-2.0.min.js')
>>> attrs.suffix
['.0', '.min']
















Asset Handlers


	
class gears.asset_handler.BaseAssetHandler

	Base class for all asset handlers (processors, compilers and
compressors). A subclass has to implement __call__() which is called
with asset as argument.


	
__call__(asset)

	Subclasses have to override this method to implement the actual
handler function code. This method is called with asset as argument.
Depending on the type of the handler, this method must change asset
state (as it does in Directivesprocessor)
or return some value (in case of asset compressors).






	
classmethod as_handler(**initkwargs)

	Converts the class into an actual handler function that can be used
when registering different types of processors in
Environment class instance.

The arguments passed to as_handler() are forwarded to the
constructor of the class.










	
class gears.asset_handler.ExecMixin

	Provides the ability to process asset through external command.


	
get_args()

	Returns the list of subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen] arguments.






	
get_process()

	Returns subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen] instance with args from
get_args() result and piped stdin, stdout and stderr.






	
run(input)

	Runs executable with input as stdin.
AssetHandlerError exception is raised, if execution is failed,
otherwise stdout is returned.










Processors


	
class gears.processors.BaseProcessor

	Base class for all asset processors. Subclass’s __call__() method
must change asset’s processed_source attribute.








Compilers


	
class gears.compilers.BaseCompiler

	Base class for all asset compilers. Subclass’s __call__() method
must change asset’s processed_source attribute.













          

      

      

    


    
         Copyright 2013, Mike Yumatov.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Gears 0.7.2 documentation 
 
      

    


    
      
          
            
  
Changelog


0.7.2 (2014-04-28)


	Fix UnicodeDecodeError during installation using pip 1.5.*.






0.7.1 (2014-04-28)


	Add public directive to mark the asset as public:

//= public





It can be used as an alternative to Environment‘s
public_assets param.








0.7 (2014-04-23)


	django-gears package has documentation now [http://django-gears.readthedocs.org] (thanks to Preston Timmons [https://github.com/prestontimmons]).



	require directive supports globbing now. If several assets are found, all
are required in alphabetical order. If nothing found matching pattern,
FileNotFound exception is raised.

Thus, require_directory app and require_tree app can be replaced with
require app/* and require app/** respectively.

depend_on directive also supports globbing.



	The information about registered search paths is available through the
paths property of the
Environment class. Search paths can be useful for
compilers to resolve internal dependencies.



	Add params directive to set asset parameters. Asset parameters can be
used to change behavior of plugins for the current asset. For example, this
can be used to disable top-level function wrapper in gears-coffeescript [https://github.com/gears/gears-coffeescript]
compiler:

//= params coffeescript=bare







	Allow Gears plugins to inject themselves to the environment. See
register_entry_points() docs.



	Manifest file can be disabled by setting manifest_path parameter in
Environment to False (thanks to Will
Bond [https://github.com/wbond]).



	Fix Python 3 compatibility (thanks to Yaoda Liu [https://github.com/shonenada]).








0.6.1 (2013-09-08)


	Add ability to disable asset fingerprinting. This can be useful, if you want
to compile assets for humans.






0.6 (2013-04-28)


	Add processor to add missing semicolons to the end of JavaScript sources.

	Add gzip support.

	Add support for cache busting. This is done through fingerprinting public
assets.

	Fix unknown extensions handling. Thanks @xobb1t for the report.

	Fix cssmin and slimit compressors.






0.5.1 (2012-10-16)


	Fix saving handled assets.

	Python 3.3 is also supported.






0.5 (2012-10-16)


	Support for Python 3.2 was added (Thanks to Artem Gluvchynsky [https://github.com/excieve]).


Note

SlimIt and cssmin compressors don’t support Python 3 yet. But you can
use compressors from gears-uglifyjs [https://github.com/gears/gears-uglifyjs] and gears-clean-css [https://github.com/gears/gears-clean-css] packages
instead.










0.4 (2012-09-23)


	Public assets storage was simplified. There is no registry for them anymore.
They are set using public_assets param of
Environment now.

Also, public assets handling was slightly improved. public_assets must be
a list or tuple of callables or regexps now. Default value:

DEFAULT_PUBLIC_ASSETS = (
    lambda path: not any(path.endswith(ext) for ext in ('.css', '.js')),
    r'^css/style\.css$',
    r'^js/script\.js$',
)





css/style.css, js/script.js and all assets that aren’t compiled to
.css or .js are public by default.



	Added require_tree directive. It works like require_directory, but
also collects assets from subdirectories recursively.



	Node.js-dependent compilers (CoffeeScript, Handlebars, Stylus and LESS) and
compressors (UglifyJS and clean-css) have been moved into separate packages
(gears-coffeescript [https://github.com/gears/gears-coffeescript], gears-handlebars [https://github.com/gears/gears-handlebars], gears-stylus [https://github.com/gears/gears-stylus], gears-less [https://github.com/gears/gears-less],
gears-uglifyjs [https://github.com/gears/gears-uglifyjs], gears-clean-css [https://github.com/gears/gears-clean-css]), as they required some additional work to
make them work (install some node.js modules, point your app to them, etc.).
Now all these packages already include all required node.js modules, so you
don’t need to worry about installing them yourself.



	SASS and SCSS compilers have been removed since they did nothing to really
support SASS and SCSS compilation.



	Support for Python 2.5 was dropped.








0.3 (2012-06-24)


	Added depend_on directive. It is useful when you need to specify files
that affect an asset, but not to include them into bundled asset or to
include them using compilers. E.g., if you use @import functionality in
some CSS pre-processors (Less or Stylus).

	Main extensions (.js or .css) can be omitted now in asset file names.
E.g., you can rename application.js.coffee asset to
application.coffee.

	Asset requirements are restricted by MIME type now, not by extension. E.g.,
you can require Handlebars templates or JavaScript assets from CoffeeScript
now.

	Added file-based cache.

	Environment cache is pluggable now.

	Fixed cache usage in assets.






0.2 (2012-02-18)


	Fix require_directory directive, so it handles removed/renamed/added
assets correctly. Now it adds required directory to asset’s dependencies set.

	Added asset dependencies. They are not included to asset’s bundled source,
but if dependency is expired, then asset is expired. Any file of directory
can be a dependency.

	Cache is now asset agnostic, so other parts of Gears are able to use it.

	Added support for SlimIt [http://slimit.org/] as JavaScript compressor.

	Added support for cssmin [https://github.com/zacharyvoase/cssmin] as CSS compressor.

	Refactored compressors, compilers and processors. They are all subclasses of
BaseAssetHandler now.

	Added config for Travis CI.

	Added some docs.

	Added more tests.






0.1.1 (2012-02-26)


	Added missing files to MANIFEST.in






0.1 (2012-02-26)

First public release.







          

      

      

    


    
         Copyright 2013, Mike Yumatov.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Gears 0.7.2 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   g
   


   
     			

     		
       g	

     
       	[image: -]
       	
       gears	
       

     
       	
       	
       gears.asset_attributes	
       

     
       	
       	
       gears.asset_handler	
       

     
       	
       	
       gears.compilers	
       

     
       	
       	
       gears.environment	
       

     
       	
       	
       gears.processors	
       

   



          

      

      

    


    
         Copyright 2013, Mike Yumatov.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Gears 0.7.2 documentation 
 
      

    


    
      
          
            

Index



 _
 | A
 | B
 | C
 | E
 | F
 | G
 | L
 | M
 | P
 | R
 | S
 | U
 


_


  	
      
  	__call__() (gears.asset_handler.BaseAssetHandler method)
  


  





A


  	
      
  	as_handler() (gears.asset_handler.BaseAssetHandler class method)
  


  

  	
      
  	AssetAttributes (class in gears.asset_attributes)
  


  





B


  	
      
  	BaseAssetHandler (class in gears.asset_handler)
  


      
  	BaseCompiler (class in gears.compilers)
  


  

  	
      
  	BaseProcessor (class in gears.processors)
  


  





C


  	
      
  	compiler_extensions (gears.asset_attributes.AssetAttributes attribute)
  


      
  	compiler_format_extension (gears.asset_attributes.AssetAttributes attribute)
  


      
  	compiler_mimetype (gears.asset_attributes.AssetAttributes attribute)
  


      
  	Compilers (class in gears.environment)
  


  

  	
      
  	compilers (gears.asset_attributes.AssetAttributes attribute)
  


      
  	compressor (gears.asset_attributes.AssetAttributes attribute)
  


      
  	Compressors (class in gears.environment)
  


  





E


  	
      
  	Environment (class in gears.environment)
  


      
  	ExecMixin (class in gears.asset_handler)
  


  

  	
      
  	extensions (gears.asset_attributes.AssetAttributes attribute)
  


  





F


  	
      
  	find() (gears.environment.Environment method)
  


      
  	Finders (class in gears.environment)
  


  

  	
      
  	format_extension (gears.asset_attributes.AssetAttributes attribute)
  


  





G


  	
      
  	gears.asset_attributes (module)
  


      
  	gears.asset_handler (module)
  


      
  	gears.compilers (module)
  


      
  	gears.environment (module)
  


  

  	
      
  	gears.processors (module)
  


      
  	get_args() (gears.asset_handler.ExecMixin method)
  


      
  	get_process() (gears.asset_handler.ExecMixin method)
  


  





L


  	
      
  	list() (gears.environment.Environment method)
  


  

  	
      
  	logical_path (gears.asset_attributes.AssetAttributes attribute)
  


  





M


  	
      
  	mimetype (gears.asset_attributes.AssetAttributes attribute)
  


  

  	
      
  	MIMETypes (class in gears.environment)
  


  





P


  	
      
  	path_without_suffix (gears.asset_attributes.AssetAttributes attribute)
  


      
  	paths (gears.environment.Environment attribute)
  


      
  	Postprocessors (class in gears.environment)
  


      
  	postprocessors (gears.asset_attributes.AssetAttributes attribute)
  


  

  	
      
  	Preprocessors (class in gears.environment)
  


      
  	preprocessors (gears.asset_attributes.AssetAttributes attribute)
  


      
  	processors (gears.asset_attributes.AssetAttributes attribute)
  


  





R


  	
      
  	register() (gears.environment.Compilers method)
  


      	
        
  	(gears.environment.Compressors method)
  


        
  	(gears.environment.Finders method)
  


        
  	(gears.environment.MIMETypes method)
  


      


      
  	register_defaults() (gears.environment.Environment method)
  


      	
        
  	(gears.environment.MIMETypes method)
  


        
  	(gears.environment.Preprocessors method)
  


      


  

  	
      
  	register_entry_points() (gears.environment.Environment method)
  


      
  	run() (gears.asset_handler.ExecMixin method)
  


  





S


  	
      
  	save() (gears.environment.Environment method)
  


      
  	search_paths (gears.asset_attributes.AssetAttributes attribute)
  


      
  	suffix (gears.asset_attributes.AssetAttributes attribute)
  


  

  	
      
  	Suffixes (class in gears.environment)
  


      
  	suffixes (gears.environment.Environment attribute)
  


  





U


  	
      
  	unknown_extensions (gears.asset_attributes.AssetAttributes attribute)
  


  

  	
      
  	unregister() (gears.environment.Compilers method)
  


      	
        
  	(gears.environment.Compressors method)
  


        
  	(gears.environment.Finders method)
  


        
  	(gears.environment.MIMETypes method)
  


      


  







          

      

      

    


    
         Copyright 2013, Mike Yumatov.
      Created using Sphinx 1.2.2.
    

  _static/comment-bright.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Gears 0.7.2 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2013, Mike Yumatov.
      Created using Sphinx 1.2.2.
    

  

_static/ajax-loader.gif





_static/comment.png





_static/up.png





_static/comment-close.png





_static/minus.png





_static/up-pressed.png





_static/down.png





_static/file.png





_static/down-pressed.png





_static/plus.png





